Aries
  • Aries AI: A Multi-Agent Ecosystem for Creativity and Interaction
  • 2. Abstract
  • 3. Introduction
    • 3.1 Vision and Mission
  • 3.2 Context and Challenges
  • 4. Core Capabilities of Aries AI
    • 4.1 Creative Agent
  • 4.2 Voice Agent
  • 4.3 Integration of the Two Agents
  • 4.4 Conclusion
  • 5. System Architecture
    • 5.1 Technical Overview
  • 5.2 Core Components
  • 5.3 Security and Privacy
  • 5.4 Conclusion
  • 6. Applications and Use Cases
    • 6.1 Creative Agent
  • 6.2 Voice Agent
  • 6.3 Cross-Functional Use Cases
  • 6.4 Conclusion
  • 7. Data and Training
    • 7.1 Data Sources
  • 7.2 Training Process
  • 7.3 Dataset Ethics
  • 8. Challenges and Solutions
    • 8.1 Technical Challenges
  • 8.2 Solutions
  • 8.3 Industry Challenges
  • 8.4 Conclusion
  • 9. Roadmap
    • 9.1 Current Status
  • 10. Community Engagement
    • 10.1 Feedback Mechanisms
    • 10.2 Report A Bug
    • 10.2 Conclusion
  • 11. Ethical and Responsible AI
    • 11.1 Transparency
  • 11.2 Ethical Use
  • 11.3 Conclusion
  • 12. Conclusion
    • 12.1 Recap
  • 13. Appendix
    • 13.1 Technical Details
    • 13.2 Glossary of Terms
    • 13.3 Conclusion of Appendix
  • 14. References
    • 14.1 Research Papers and Technical Literature
  • 14.2 Datasets
  • 14.3 Tools and Frameworks
  • 14.4 Conclusion
Powered by GitBook
On this page

14.2 Datasets

  1. COCO Dataset (Common Objects in Context):

    • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). “Microsoft COCO: Common Objects in Context.” European Conference on Computer Vision (ECCV).

    • A widely used dataset for image recognition and generation tasks.

  2. LibriSpeech Dataset:

    • Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). “Librispeech: An ASR corpus based on public domain audiobooks.” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    • Used for training and fine-tuning the Voice Agent’s speech recognition models.

  3. OpenWebText Corpus:

    • An open-source dataset inspired by OpenAI’s WebText, utilized for training language models in conversational AI.

  4. ImageNet:

    • Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). “ImageNet: A Large-Scale Hierarchical Image Database.” IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

    • A foundational dataset for training visual recognition and generation models.

Previous14.1 Research Papers and Technical LiteratureNext14.3 Tools and Frameworks

Last updated 4 months ago